
Journal of Visual Languages and Computing (1990) 1, 141-157

The Specification of Visual Language Syntax*

ERIC J. GOLIN']" AND STEVEN P. REISS

Brown University, Department of Computer Science, Providence, RI 02912, U.S.A.

Visual programming languages use pictures as programs. One approach to building a
visual programming environment is to parameterlze a generic environment with a
language specification. We describe a mechanism for specifying visual languages that
can be used as the basis of a language-independent visual programming environment.
Our mechanism is a new type of grammar, called a picture layout grammar. We show
how this type of grammar can describe the two-dimensional syntax of a visual
language and give an example of its use. A picture layout grammar permits the
syntactic structure of visual program to be recovered by parsing. The parsing ability
provides the basis of our visual programming environment.

1, I n t r o d u c t i o n

AN AREA OF RECENT RESEARCH ACTIVITY has been the development of visual program-
ming languages [1,2]. ~Visual programming languages use pictures to express
computations. Visual progi'amming languages exploit both the graphical interface and
powerful processors found in state-of-the-art workstations. A pictorial presentation is
often far more expressive than a textural representation of the same information. A
finite state automaton could be described using text or a program, but a finite state
diagram is much easier to understand.

Much of the research in visual programming has focused on the development of
specific visual languages. For example, visual languages have been implemented for
functional programming [3], icon based flowcharts [4], programming by demonstra-
tion [5], finite state automata [6], and data flow [7]. Implementation of these languages
has required the construction of ad hoc special purpose environments for creating,
manipulating and processing visual programs. As a result, development of a new
visual programming environment requires substantial effort.

Part of the reason for this focus is the lack of formal models for specifying visual
language syntax and tools for utilizing those specifications. For traditional textual
programming languages, formal models such as context-free grammars provide a
syntactic specification mechanism; and tools such as 'yacc' [8] allow the easy creation
of parsers for new languages. Similar tools have not been available for visual languages
until recently, when several attempts have been made to provide mechanisms for
specifying and manipulating visual syntax [9-11]:

* This research was supported in part by grants from Defense Advanced Research Projects Agency, the
National Science Foundation, IBM and the Digital Equipment Corporation. Equipment support was
provided by the National Science Foundation, U.S.A.
t Support for this author was provided by an I.B.M. Graduate Fellowship. Author's current address is
Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 West Springfield
Avenue, Urbana, IL 61801, U.S.A.

1045-926X/90/010141 + 17 $03.00/0 �9 1990 Academic Press Limited

142 E.J. GOLIN &; S. P. REISS

Our goal is to develop a language-independent environment for visual program-
ming. Our approach is based on picture layout grammars. Picture layout grammars
are a new type of grammar which can be used to specify the syntax of visual languages
in much the same way that context-free grammars are used to define textual
programming languages. Picture layout grammars are based on a new model of
grammar which generates sets of objects with attributes.

We envision an environment where the visual language designer defines his visual
language by writing a picture layout grammar. The visual programmer then creates his
visual program using a general purpose graphics editor. The visual program (i.e.
picture) is then parsed to recover the underlying syntactic structure of the program.
Processing of the program (e.g. compilation) can be performed using the extracted
structure. Figure 1 gives the overall architecture of such a visual programming system.

The graphics editor provides the user with the ability to interactively create and
modify pictures by placing graphical objects such as shapes, lines and text strings on
the screen. These graphical objects form the primitive elements (i.e. terminal symbols)
of a visual language. The editor maintains and manipulates its own representation of
the picture. This is analogous to the situation with conventional programming
languages, where a program is constructed using a generic text editor. In both cases,
the programmer manipulates a source file.

The spatial parser uses the grammar definition of the visual language to parse the
picture and recover the underlying structure of the program. T h e parser maps from
the flat representation of the picture as a collection of graphical elements to a parse
tree. The parse tree is augmented with attributes, which can be used to provide
semantic processing for a visual language.

picture I
layout ..~1 SPATIAL
grammaTI PARSER

L~nguag~ .J~
D~signor

graphical GRAPHICS
objects EDITOR

i

Parse
Tree)

~ attributes

r Exooutab,;
k PrOgram fl

~ Picture
File)

End-User

Visual
Programmer

Figure 1. A visual programming system based on spatial parsing

S P E C I F I C A T I O N O F V I S U A L L A N G U A G E S Y N T A X 143

This approach has several advantages over a special-purpose environment:

�9 Using a grammar to specify a visual language provides a precise definition of the
syntax of the language.

�9 Using a parser to recover the language-dependent structure of the program
allows the program to be manipulated as a picture. Thus, the same editor may
be used for different visual languages.

�9 Since the parser is grammar-driven, a parser for a new visual language is created
by merely writing a new grammar. The effort in developing a new visual
language is greatly reduced.

This paper describes the picture layout grammar mechanism for visual language
syntax specification. Section 2 discusses what comprises a visual language. Section 3
gives a more formal definition of visual languages and describes the grammar model
used to specify visual languages. Section 4 gives an example of how picture layout
grammars are used to specify a visual language. Section 5 describes our implementa-
tion and Section 6 summarizes our results and relates them to other work.

2. Visual Languages

The term visual language is used to describe several types of languages: languages
manipulating visual information; languages for supporting visual interactions, and
languages for programming with visual expressions [2]. The term visual programming
languages generally refers to the third category. Visual programming languages may
be further classified, according to the type and extent of visual expression used, into
icon-based languages, form-based languages and diagram languages [12].

Figure 2 shows example programs from three visual languages: a finite state diagram

,~ ~ i .ililiiii~L~,~ ~: L .i!iiiiii ii~.,-,;~-~;,; I. i:;~i~:.iiiiiiiiiii!iiiii!iiiiiiiiiiiiiii~i~.iiiii~iiiiiili!i!:.iiiiii

i}

�9 a" ~ii'ii'~iiiiiiiiilii'~iii~i~,
~iiiiiiiii~!iiiiiiiiiJ " - - 'o" !

ilii

V

�9 ~ [~ ~':=: :~ ~ ~ ~ ~:'~:~:='~':=:~==:=:':~'~';: : : :;~=~:~:~:~:" ~ ~:;=~:~::'~::~:~:~:=:~:'~`~;;:;~;~=~:.:.:~:̀ :~:~:~=~=:::~:~:m::~:=;~:~:~:~:;~;:~ :̀;:~:.:.:~:~=~:~=~:~:~:::~:~:::=:~:~=~!~ !.!17~i!i!! ~ i

iml c,o~o Push Im

Figure 2. Visual language examples. (a) A GARDEN fsa program [13]

144 E.J. GOLIN & S. P. REISS

_ • . , ' - . . , ,

�9 - "" "- ~ E d i t i . . - : ; ~ -.~

~G

X

Fact (X)= if X=O then 1 else Xtfact (X-l)

Figure 2. (b) A Show and Tell program redrawn by permission of T. D. Kimura [7]

stopwatch

(i d ~

rl /;\ '"

"--r i r

<,~ 1~ i ~,1 ~
c ,.0) c : - '

Figure 2. (c) A StateChart program [14]

SPECIFICATION OF VISUAL LANGUAGE SYNTAX 145

Figure 3. A two-dimensional collection of objects

developed with the GARDEN system [13]; a Show and Tell puzzle [7]; and a
StateChart program [14]. These languages all use pictures to form programs. The
languages differ syntactically, in that the set of pictures constituting valid programs is
different for each language. (They also differ semantically, in the meaning that is
assigned to programs.) They are similar, however, in the underlying notion of what
constitutes a picture. At the lowest level, a picture may beviewed as a collection of
primitive elements such as lines, polygons and text strings. This is analogous to
viewing a textual program as a string of lexical elements."

The primitive elements of a picture may be grouped together into aggregate shapes,
which may be further combined to form larger shapes until the entire picture is
created. For a textual program, this combination groups adjacent symbols into
subphrases. The composition of two textual phrases is their concatenation. For a
picture, the composition is more complicated than concatenation. The types of
compositions may be classified into two groups:

�9 The composition of adjacent shapes, either fully defined, as in A above B and
the bottom of A touching the top of B, or less specific, as in A is next to B.

�9 The connection of elements, such as two line segments with a common
endpoint.

Using two-dimensional composition operators, a picture may be decomposed into
sub-pictures, down to the primitive elements. The syntactic distinctions between the
visual languages in Figure 2 arise from both the choice of primitive elements and the
composition operators used.

�9 Visual programming languages and textual programming languages are similar in
that programs are formed over a basic alphabet and may be decomposed into a
well-defined structure. They differ in two important aspects, however. Text strings are
one-dimensional and therefore have a linear ordering. A picture, on the other hand, is
a two-dimensional object. A linear ordering of the components of a picture would not
preserve the adjacency relationship between elements. For example, consider Figure 3
which depicts a picture formed from four boxes. The structure of this picture could
have either the boxes labelled 1 and 2, or the b0~es labelled 1 and 3 related, depending
on the definition of the language. The elements of the picture cannot be simply
linearized.

Another important difference between pictures and text is the underlying structure.

a Both visual and textual languages may be viewed at a lower level---a picture is simply an array of pixels
and a text program is merely a string of characters. We are not concerned with the issue of lexical
processing, or mapping from this lowest level into the elements of syntax.

146 E.J. GOLIN & S. P. REISS

The essentially line~ir nature of text is reflected in an underlying tree structure. In a
picture, a subshape may compose With several other shapes, rather than just an
immediate left or right neighbour. Thus, the underlying structure in a visual language
is often a directed graph rather than a tree [15].

Our method of specifying visual language syntax is grammar based. The language
implementor specifies the syntax using a picture layout grammar. The terminal
symbols of the grammar will correspond to the picture elements. The productions
correspond to the compositionoperators of the pictures. A derivation tree (actually a
directed acyclic graph) represents the structure of the picture, with the non-terminal
nodes corresponding to the intermediate components.

3, P ic tu re L a y o u t G r a m m a r s

This section gives a more precise definition of visual languages and describes our
specification method. A textual language may be viewed as a (possibly infinite) set of
strings. Similarly, a visual language may be viewed as a set of pictures, giving us the
following definitions:

Definition 1. A picture element is a primitive graphical object such as a line, shape or
text string. A picture is a collection of picture elements arranged on a plane. A visual
language is a set of pictures. The syntax of a visual language is specified by defining
the set of pictures which form the language.

Using a grammar to characterize a set of pictures (or strings) serves two purposes-it
provides a finite definition for an infinite set and the grammar gives a structure to the
elements of the set which forms the basis for both parsing and syntax-directed
processing.

Picture layout grammars are based on a new grammar model, the attributed
multiset grammar (AMG) [11]. Multiset grammars are similar to context-free
grammars, except that the right-hand sides of a production are considered to be an
unordered collection of symbols, rather than a string. The language generated by a
multiset grammar is a set of multisets, b An attributed multiset grammar is a multiset
grammar which has been augmented with parsing attributes. A production in an
attributed multiset grammar is a triple (R, S, C) where

�9 R is a rewrite rule N-->M, where N is a non-terminal symbol and M is a
multiset of symbols.

�9 S is a semantic function, which maps from the attributes of the'right-hand side
(RHS) to the attributes of the left-hand side (LHS).

�9 C is a constraint defined over the attributes of the RHS which indicates when
the production is valid.

Attributed multiset grammars are similar to traditional attribute grammars [16], but
differ in several key respects. First, AMGs are based on multiset grammars rather than
context-free grammars, so the right-hand side of an AMG production is considered to
be unordered. An element of a language recognized by an attributed multiset grammar
is an unordered collection of attributed objects. This corresponds to the definition of
visual languages given above.

Another difference is that the attributes in an AMG are an integral part of the

b A multiset is a set which may have repeated element, and is what we mean by an unordered collection.

SPECIFICATION OF VISUAL LANGUAGE SYNTAX 147

parsing of an input multiset. Oniy synthesized attributes are permitted for parsing,
but the terminal symbols may have synthesized attributes. The attributes influence the
parsing through the constraints associated with productions. A parse of an input
multiset is valid only if all the constraints are satisfied.

Attributed multiset grammars remove the notion of ordering implicit in a string
grammar. Instead, an AMG derivation represents the logical structure of a program.
For a visual program, this abstract structure corresponds to the decomposition of the
picture into subshapes. A picture grammar (PLG) is an attributed multiset grammar
where the production correspond to picture composition operators.

The attributes in a PLG represent the spatial information for a picture element (or
aggregate). Each grammer symbol has four attributes lx, by, rx, ty. Abstractly, there
are two types of primitive elements in picture layout grammars: shapes (where the
attribfites describe the rectangular extent); and lines [where the attributes give the two
endpoints (lx, by) (rx, ty) of the symbol]. More specialized graphical primitives are
viewed as instances of one of these two types. For example, text objects and ellipses
are both considered special types of shape, and arrows are a special type of line.
Additional attributes are used to specify other significant information, such as line
style or the string value of a text object.

The constraints in a production specify the relationship between the components of
a particular composition. The semantic functions compute the information for the
aggregate object. We provide a set of predefined production operators which
correspond to commonly used compositions. A production operator is defined by a
constraint and semantic fuhction which implement the associated composition. A
production with a predefined operator is specified as A--> op(B, C). This is equivalent
to a production

A ~ {B, C) (the rewrite rule)
A.attr = fUnCop(B.attr, C.attr) (the semantic function)

Where:
predop(B.attr, C.attr) (the constraint)

where predov specifies the relationship for the composition and funcop computes the
attributes of the aggregate object.

The production operators defined for picture layout grammars are shown in Figure
4. An example of a production with a predefined operator is A->over(B, C),
corresponding to the situation shown in Figure 5. The operator over has the
constraint B.by ~ C.ty, which ensures that B is located above C. The semantic
function for over gives A the extent enclosing both B and C.

In addition to the predefined semantic and constraint functions, additional
functions and/or constraints can be specified. These additional functions can be used
to refine the composition operations, to define new composition operations and to
disambiguate the parse. Fo r example, .the production in Figure 5 can be rewritten as

A'-+ over(B, C)
Where:

B . b y = = C.ty
B.Ix = = C.Ix
B.rx = = C.rx

to specify that B must be over and exactly touching C, with the left and right edges
aligned.

148 E.J. GOLIN & S. P. REISS

over(B, C)
left_of(B, C)
filing(B, C, -3
contains(B, C)
group_of(B)
adjacent_to(B, C)
touches_L(B, C)
touches_R(B, C)
points_from(B, C)
points_to(B, C)
labels(B, C)
follow(B, C)-
join(B, C)
fork(B, C)
parallel(B, C)
reverse(B)

B is over C
B is to the left of C
an arbitrary tiling
B contains C
an area containing an arbitrary number of B objects
B is adjacent to (any direction) C
the left (Ix, by) point of B is on the boundary of C
the right (rx, ty) point of B is on the boundary of C
the left end of B is on C
the right end of B is on C
B is adjacent to the line C
the right end of B is the left end of C
the right end of B is the right end of C
the left end of B is the left end of C
both ends of B and C match
exchange the left and right ends

Figure 4. Picture layout grammar production operators

A

Figure 5. Production A---* over(B, C)

Finally, to allow picture layout grammars to describe directed graph structures, the
following extension is made. In a production of a picture layout grammar, an element
of the right-hand side may be marked as remote. A remote symbol represents a
symbol which is not actually part of the production, but must be present elsewhere in
the parse tree. This corresponds to introducing an additional edge into the parse tree.
These edges together with the parse tree form a directed graph. The restriction is
made that the graph must be acyclic. (Note that this restriction is on the parse
structure, and not on the picture.)

A remote symbol in a production is denoted by underlining the symbol in the
RHS. The semantic functions and constraints (both the implicit functions associated
with a predefined operator and explicit user-specified functions) may refer to a remote
symbol in the normal fashion (which serves to determine exactly which node in the
parse tree is being referenced). Remote symbols allow a subshape to be referred to by
(i.e. composed with) more than one other sub-shape.

4. Def in ing a Visual L a n g u a g e

In this section we give an example of how picture layout grammars are used to specify
the syntax of a visual language. The language defined is based on the StateCharts
language [14] c. StateCharts are an extension of finite state automata. StateCharts are

c We have simplified and present only a subset of the language defined by Hard.

SPECIFICATION OF VISUAL LANGUAGE SYNTAX 149

state_name

Figure 6. Atomic state

interesting because they were developed as a visual programming language and are not
based on any textual language. They exploit the two-dimensional nature of pictures to
express concurrency in a natural fashion. StateCharts have been used for program-
ming real-time reactive systems, such as embedded control systems.

The StateChart model is based on finite state automata. A finite state automaton
(FSA) consists of a set of states and a set of transitions. Each state is identified by a
label. A transition may be thought of as a triple (So, e, sf), meaning that in state So, if
the next input is event e, move to state sf. One state in the FSA is designated as the
initial state, and one or more states are designated as final states. Finite state automata
also form a visual language (e.g. by drawing states as circles and transitions as labelled
arcs).

StateCharts enrich finite state automata both semantically and syntactically (i.e.
visually). The basic model of computation is similar to that of finite state automata. A
StateChart has a current state which changes in response to input events. StateCharts
enhance the notion of state with two types of structure: depth and orthogonality. We
will now develop the StateChart language and show how it can be specified with a
picture layout grammar.

The basic entity in a StateChart is a state. The simplest version of a state is a
rectangle containing a label, as shown in Figure 6. This is a simple atomic state, similar
to a state in an FSA. An atomic state may also represent a more complex state which
is left unspecified. StateCharts extend atomic states with depth. A state can be formed
from the union of a group of states. The containing state is the exclusive-OR (XOR)
of the states within it. An FSA consists of a single XOR-union of atomic states.
StateCharts extend this notion to allow states to be defined as unions to arbitrary
depth.

This hierarchy of states is shown graphically by nesting the group of states within
the.containing state. Figure 7 shows a StateChart consisting of a state labelled
outer_state which contains the X O R of three states: state1, state2 and state3. In turn,

oute r state
state.1J [state2 I
s t a t e 3

1 1 ! I

Figure 7. XOR-union of states

150 E.J. GOLIN & S. P. REISS

(2) STATE-* contains(rectansIr
(3) STATE_INSIDE-+ text
(4) STATE_INSIDE-~ over(text, XOR_UNION)
(5) XOI~UNION-~ STATE
(6) XOR_UNION ~ adjacent_to(XOR_UNION~,XOR_UNION~)

Figure 8. Productions for simple and union states

state3 consists of the states innerl and inner2. The only spatial relationship required
between states in an XOR-union is that they are nonoverlapping. The label for the
containing state must be above all the states in the XOR-union.

Figure 8 gives a picture layout grammar for this part of StateCharts. Nonterminal
symbols are shown in CAPITAL letters and terminal symbols in lowercase bold
letters. Production 1 says that a STATE is surrounded by a rectangle. Production 2
defines a simple atomic state. Productions 3 through 5 define an XOR-union.
Production 5 combines the states in the union. This grammar does not necessarily
specify a unique decomposition of XOR-union, but since we are only interested in
the group, we do not care how it is decomposed.

The second extension made by StateCharts is to allow a state to be decomposed
into orthogonal components. This composition corresponds to the Cartesian product
of states. When the StateChart is in the product state, it is also simultaneously in each
of the Contained states. Just as the previous grouping can be xiewed as the XOR of
states, this product can be seen as the AND of a group of states.

The visual notation for the orthogonal product is to divide the containing state by
dashed lines, either vertically or horizontally. Figure 9 shows an example of an
orthogonal product of states. When in this state, the machine is simultaneously in
statel, state2 and state3. Note that no label is given to the product state. Orthogonal
products can be combined with XOR-unions, as shown in Figure 10. The state
defined by Figure 10 is an element of(A1 UA2) • (B1 U B2 U B3) • (CI U (C2 x C3)).

Picture layout grammar productions for the orthogonal product of states are given
in Figure 11. Productions 6 through 9 build up a state from horizontal and vertical
compositions of states. Production 10 (11) uses additional attributes to specify exactly
what forms a vertical (horizontal) bar.

Similar to finite state automata, StateCharts have transitions defined on inpu t
events. The visual notation for a transition is a labelled arc between states, as shown in
Figure 12. The label is a text strin'g specifying the input event. Possible PLG
productions for a transition are:

LABELLED_ARROW--~ labels(text, arrow)
LABELLED_ARC--, points_to(LABELLED_ARROW,STATE)

s t a t e 1

I

t

s ta te 2 , s t a t e 3
I

t

Figure 9. Orthogonal product of states

sPECIFICATION OF VISUAL LANGUAGE SYNTAX 151

t

t

Figure 10. A complex state

(7) STATE_INSIDE--~ left_of(STATE_INSIDE+,RIGHLINSlDE)
(8) RIGHT_INSIDE--) left_of(VERT_BAR,STATE_INSlDE)
(9) STATE_INSIDE--) over(STATE_INSlDE~,BOTrOM_INSlDE)
(10) BOTI'OM_INSIDE--~ over(HORIZ_BAR, STATE_INSIDE)
(11) VERT_BAR--~ line

Where
line.LX = = Une.P,X
line.style = = DASHED_STYLE

(12) HORIZ_BAR---~ line
Wher~

line.BY = = line.TY
line.style = = DASHED_STYLE

Figure I1. Productions for orthogonal product of states

I event I s t a t e 1 ~.~

Figure 12. A transition

s t a t e 2

The first production uses the labels operator to relate an arrow with the text string
labelling it. The second product ion defines a L A B E L L E D _ A R C to be an. a r row
which points to a STATE. No te that the STATE operand in the second product ion is
underlined. This indicates that STATE is a remote argument, so the STATE is not
actually below the L A B E L L E D _ A R C in the parse tree. The remote STATE operand
serves two + purposes: it expresses the syntactic construction that a transition must
point to a destination state; and it relates the trafisition to that destination state with a
non-tree edge in the parse structure.

N o w we need to relate the transitions to the state which they are leaving. We can
do this with a product ion such as

STATE --~ touches_L(LABELLED_ARC,STATE;),

which combines all the arcs leaving a state with that state one at a time. As with the

152 E.J. GOLIN & S. P. REISS

XOR-union, this production does not specify a unique parse structure. First of all, no
order is given for the arcs to combine with the state. This is not a problem for
expansive productions (productions where the LHS has a larger extent than the
individual elements of the RHS, such as over), but the touches_L operator is not
expansive. We need to disambiguate this production by introducing an ordering on
the arcs. Since it is only important that there is an ordering, we can use an arbitrary
one. A second problem is that we would like any incoming arcs to point to the
bot tommost STATE in the parse tree (i.e. the state formed by the rectangle). Both of
these problems can be solved by introducing a new nonterminal symbol STATE0 and
a new attribute pos, as shown in Figure 13 below.

(13) STATE0--~ Contains(rectangle, STATE_INSIDE)
(14) STATE-+ STATE0

STATE.pos = 0
(15) STATE --~ touches_L(LABELLED__ARC,STATE~)

STATE.pos = hash(LABELLED_ARC)
Where

STATE~.pos < hash(LABELLED_ARC)
(16) LABELLED_ARC-, 10oints_to(LABELLED_ARROWrSTATEO)
(17) LABELLED_ARROWze labels(text~arrow)

Figure 13. Transition productions

Here production 13 replaces production 1 above. The hash function maps from the
extent of a symbol to a unique positive integer, which serves as the arbitrary ordering
of the arcs around a STATE. The pos attribute is used to implement the ordering.
Production 15 fixes the L A B E L L E D _ A R C to point to the STATE0 object.

Finally, StateCharts makes two extensions to allow transitions to work with the
hierarchy. For example, consider the statechart shown in Figure 14, which has ~i
transition from state A to state B on event El . Since state B is the XORounion of
states B! and B2, we must specify which of these states is tO be entered. The first
extension is the use of default states. The default state specifies which state is to be
entered when a group is entered, it is indicated visually by an unlabelled arrow
starting at an circle containing the letter 'D" and pointing to the default state. A
default state is analogous to the start of a finite state automata.

The second extension is to add memory to an XOR-Union . A circle containing the
letter 'H ' represents the most recently visited state. A transition ending at the history
symbol signifies a transition to whatever state was most recently visited. Figure 15
shows a StateChart with both history and default states. The default state is initially
state B1 and then is the most recently visited state.

The PLG productions for default states and history are given in Figure 16. A
D E F A U L T is specified as an circle containing a "D" with an unlabelled a r row

I
B

Figure 14. An underspecified transiuon

SPECIFICATION OF VISUAL LANGUAGE SYNTAX 153

E1

B

Figure 15. Default and history states

pointing to a STATE0 and an optional Unlabelled arrow pointing to a HISTORY. A
HISTORY is specified as a circle containing an 'H'. Productions 24 through 27 are
used to include the default and history symbols into the XORounion and replace
productions 4 and 5. Two additional attributes, default and history, are used to ensure
that an XOR-Union has at most one history and default symbol.

We complete the specification of our StateChart language with the production,

CHART--~ STATE

which defines a StateChart to be a STATE. Figure 17 shows an example of StateChart.
Theparse structure for this StateChart is given in Figure 18. The interior nodes of the

(18) DEFAULT--) DEFAULT_STATE
(19) DEFAULT-~ touches_L(UNLABELLED_ARC_HIST, DEFAULT_STATE)
(20) DEFAULT_STATE--) touches_L(UNLABELLED_ARC_STATE, DEFAULT_SYMBOL)
(21) DEFAULT_SYMBOL--) contains(cirde, text)

Where
text.sval = -= "D"

(22) HISTORY--) contains(circle,text)
Where

text.sval =-- "H"
(23) UNLABELLED_ARC_HIST-) points_to(arrow, HISTORY)
(24) UNLABELLED_ARC_STATE-) points_to(arrow, STATE0)
(25) XOILGROUP-) STATE

XOR_GROUP.default = 0
XOILGROUP.history = 0

(26) XOILGROUP -:, DEFAULT
XOILGROUP.default -~- 1
XOILGROUP.history - 0

(27) XOILGROUP-) HISTORY
XOR_GROUP.defauit = 0
XOR_.GROUP.history = 1

(28) XOILGROUP-) adjacent_to(XOR_GROUP1 ~OLGROUP~)
XOILGROUP.default = XOR_GROUPl.default + XOR_GROUP2.default
XOILGROUP.history = XOR_GROUPl.history + XOR..GROUPg.history

Where
XOR_GROUP~.default + XOR_GROUP2.default -< 1
XOILGROUP~.history + XOR,GROUP2.history -< 1

Figure 16. Default and history productions

154 E.J . GOLIN & S. P. KEISS

sample chart.

A1 A 2

E1
t ~

v

Figure 17. A sample StateChart

parse tree are labelled with nonterminal symbols. The leaf nodes are labelled by the
terminal symbols. Note the thick grey arrow from the LABELLED_ARC node to
the STATE0 node. This indicates that STATE0 was a remote symbol in the
LABELLED_ARC production.

The spatial parser takes as input the ten terminal symbols (three rectangles, five text
strings, a line and an arrow) shown in Figure 17. Each terminal symbol has attributes

CHAF[T

STATE

"sample chart" XOI_UN~N

XOR_U~ON XOR UNION

STilE LABELLED ARO STATE

STATE INSIDE "El" ~ ~ STATEINS~OE /'-\
STATE_INSIDE RIGHT INSIDE "B"

j, i x
" " VEI l BAR STATE_INSIDE

1= "A2"

s.

Figure 18. Parse structure for StateChart

SPECIFICATION OF VISUAL LANGUAGE SYNTAX 155

which express its location, line style, etc. The parser processes the terminal symbols
and produces the parse structure shown in Figure 18. The spatial parsing algorithm is
described in [11].

5. T h e G R E E N E n v i r o n m e n t

The GRaphical Editing ENvironment (or GREEN) is a visual programming
environment based on picture layout grammars implemented at Brown University.
[11] The environment combines a graphics editor with a grammar driven spatial
parser. It allows the definition of visual languages and provides the means to create
and process visual programs.

A visual language is specified by a text file containing a picture layout grammar.
The file is in a format similar to a yacc input grammar, and contains definitions of the
objects in the grammar (e.g. attributes, terminals and nonterminals) and a list of
productions. GREEN reads the language specification from the grammar file.

A visual programmer uses the editor to create a picture. The editor is a simple
object-based graphics editor. A picture is a collection of primitive graphical objects.
The editor currently supports rectangles, octagons, circles, text strings, line segments
and arrows as primitve object types. A picture is edited by picking commands from
menus and using the mouse for positioning and selection. Pictures may besaved and
loaded from files, and several pictures may be edited at once. A grid is provided for
aligning the positions of objects.

GREEN contains an implementation of a spatial parsing algorithm for picture
layout grammars. The spatial parser uses the language specification read from a
grammar file to analyse the current picture. The result of the parse is an attributed
parse structure.

The attribute language provides three data types: integers, strings and lists.
Operations on these types are provided by builtin functions. New types and
additional functions may be declared in the grammar file. For a new function, the
declaration gives a name for the function within the attribute expressions as well as
the name of an external routine implementing the function. The external routine is
dynamically loaded from an object file. The hash function used in Figure 13 is an
example of an external function.

In addition to the attributes used for parsing, the language designer can specify
processing attributes for symbols. These attributes may be used to perform" static
checks, compute values, take actions, compile the program or translate the program
into an abstract representation. The processing attributes may be either synthesized or
inherited. They are evaluated in a separate phase after the parsing is complete.
Attribute values of the root node in'the parse structure can be accessed from within
GREEN. External functions allow the specification of other actions to take following
parsing (e.g. writing an object file).

GREEN is implemented in the C programming language, using the X Window
System and the Brown Workstation Environment [17]. It runs on workstations from
Sun Microsystems (Sun 3, Sun 4 and Sparcstation). Picture layout grammars have been
written for a number of visual languages, including Statecharts, finite state diagrams
and expression trees.

156 E.J. GOLIN ~ S. P. REISS

6. Conclusion

This paper describes a mechanism for defining the syntax of two-dimensional
languages. Several other researchers have looked at the problem of specifying visual
languages with grammars. Lakin [9] coined the term spatial parsing and described a
type of grammar for specifying visual languages. He advocated using a general
purpose graphics editor to create a picture and recovering its structure with a parser.
He did not give a formal model for his visually annotated grammars or an efficient
general parser.

The SIL project has also attempted to build a programming environment using a
spatial parser [18]. The SIL compiler is designed to handle icon-oriented languages. It
uses a picture grammar, which is a context-free grammar augmented with spatial
operators. The syntax analysis is performed by first transforming the picture into a
pattern string and then using a lookahead LR parser. The spatial operators are limited
to horizontal or vertical concatenation and spatial overlay. Because the picture must
first be transformed into a pattern string, the SIL syntax mechanism does not extend
to complex visual languages such as Statecharts. The SIL project demonstrates the
utility of a parser for a visual environment.

Other attempts at using grammars to describe pictures can be found in the research
on syntactic pattern recognition [19]. Shaw's Picture Description Language used a
context free grammar augmented by concatenation operators to describe a picture
[20]. Bunke has described the use of attributed programmed graph grammars for
interpreting diagrams [21]. Fu has suggested the use of an attribute grammar for
picture recognition [22]. Syntactic pattern recognition applications differ from our
goal in that the pictures are not actually language elements, and the grammars are used
to capture the structure of the pattern.

We ha~'e described a specification model for visual language syntax. Our model has
proven to be widely applicable. We have defined a number of visual languages using
picture layout grammars, all of which can then be parsed within our visual
programming environment. The grammar model is easily extended to new visual
compositions by providing new semantic functions and constraints. Tile parser has
also been used within a visual programming environment developed at GTE
Laboratories [23]. Our continuing research is concentrated on two issues-better
integration of semantic processing and investigation of other tools based on picture
layout grammars.

References

1. S. K. Chang (1987) Visual languages: A tutorial and survey. IEEE Software 4, 29-39.
2. N. C. Shu (1988) Visual Programming. Van Nostrand Reinhold Company, New York,

315pp.
3. G. Raeder (1984) Pr6gramming in Pictures. PhD thesis, University of Southern California,

1984.
4. E. P. Glinert & S. L. Tanimoto (i984) Pitt: an interactive graphical programming

environment, IEEE Computer 17, 7-25.
5. R. V. Rubin, E. J. Golin & S. P. Reiss (1985) Thinkpad: A graphical system for

programming by demonstration. IEEE Software 2, 73-79.
6. R. J. K. Jacob (1985) A state transition diagram language for visual programming. IEEE

Computer 18, 51-59.
7. T. D. Kimura, J. W. Choi & J. M. Mack (1986) A visual language for keyboardless

programming, Technical report WUCS-86-6, Washington University, 52pp.

SPECIFICATION OF VISUAL LANGUAGE SYNTAX 157

8. S. C. Johnson (1974) Yacc: Yet another compiler-compiler. Technical report, Bell
Laboratories.

9. F. Lakin (1986) Spatial parsing for visual languages. In Visual Languages (S.-K. Chang, T.
Ichikawa, and P. A. Ligomenides, eds), Plenum Press; New York, pp. 35-85.

10. G. Tortora & P. Leoncini (1988) A model for the specification and interpretation of visual
languages. In: 1988 IEEE Workshop on Visual Languages (Pitsburgh, PA), IEEE, pp.
52-60.

11. E. J. Golin (1990) A Method for the Specification and Parsing of Visual Languages. PhD
thesis, Brown University.

12. N. C. Shu (1986) Visual programming languages: A perspective and a dimensional analysis.
In Visual Languages (S.-K. Chang, T. Ichikawa & P. A. Ligomenides, eds), Plenum Press,
New York, pp. 11-34.

13. S. P. Reiss (1987) Working in the Garden environment for conceptual programming, IEEE
Software 4, 16-27.

14. D. Harel (1987) Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8, 231-274.

15. E.J. Golin & S. P. Reiss (1987) Representing visual programs with object graphs, Technical
Report CS-89-05, Brown University.

16. D. E. Knuth (1968) Semantics of context-flee languages. Mathematical Systems Theory 2,
127-145.

17. S. P. Reiss & J. T. Stasko (1989) The Brown Workstation Environment: A user interface
design toolkit. In: IFIP Working Conference on Engineering for Human Computer
Communication (Napa Valley, CA), North Holland, 1989.

18. S.-K. Chang, M. J. Tauber, B. Yu & J.-S. Yu (1989) A visual language Compiler. IEEE
Transactions on Software Engineering 15, 506-525.

19. K. S. Fu (1982) Syntactic Pattern Recognition and Applications. Prentice-Hall, Inc., New
York, 596pp.

20. A. C. Shaw (1969) A formal picture description scheme as a basis for picture processing
systems. Information and Control 14, 9-52.

21. H. Bunke (1982) Attributed programmed graph grammars and their application to
schematic diagram interpretation. IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI4, 574-582.

22. K. C. You & K.-S. Fu (1979) A syntactic approach to shape recognition using attributed
grammars. IEEE Transactions on Systems, Man and Cybernetics SMC-9, 334-345.

23. E. Golin, R. V. Rubin & J. Walker II (1989) The visual programmers workbench, In:
Proceedings of IFIP World Computer Conference (San Francisco, CA), North-Holland,
1989.

